
Lighter Documentation
Release Minimum Viable Product

Ethan Hunter

Jul 21, 2019

Overview

1 Introduction 3

2 Lighter Architecture 5
2.1 Basics . 5
2.2 Terminology . 5
2.3 Interop Between Lighter Core and Compiler . 6
2.4 Compiler Components . 6
2.5 Core Components . 7

3 Getting Started With Lighter 9

4 Using Lighter 11

5 Endpoints 13
5.1 Endpoint Annotations . 13
5.2 Resource Controllers . 13
5.3 Path Template Syntax . 14
5.4 Query Parameters . 14
5.5 Accessing the Request Body . 14
5.6 Parameter Type Inference . 14

6 Response API 17
6.1 Using Response . 17
6.2 Standard Response Decorators . 17

7 Request Guards 19

8 Injection API 21

9 Lighter API 23

10 Automatic Configuration 25

i

ii

Lighter Documentation, Release Minimum Viable Product

Lighter is a fully-featured web framework for Java. It’s primarily designed for RESTful services, but it can be used
for all sorts of other things too!

Lighter is different than most other Java web frameworks. Lighter stands inbetween micro-frameworks like Spark Java
and giant monolithic frameworks like Spring Boot. Like a micro-framework, Lighter is small and doesn’t come with
a lot of dependencies. It lets you choose your own serialization, persistance, and dependency injection solutions. Like
a monolithic framework, Lighter provides declarative configuration and high-level abstractions.

Lighter achieves this by working at compile-time instead of run-time. Lighter uses almost no reflection. Instead, it
depends on annotation processors to provide high level constructs. This allows Lighter’s abstractions to have close to
zero cost.

Lighter aims to be the anti-framework framework. Whenever possible, it achieves abstraction without magic. When
it does use magic, Lighter focuses on making it inutitive and easy to follow. Lighter avoids pulling in dependencies
it doesn’t have to and lets the developer structure their application. Lighter provides abstraction without incuring
performance penalties or clarity costs.

For complete API documentation, check out the javadocs (link TBD).

TESE DOCS ARE STILL A WORK IN PROGRESS. Almost every page still has a lot of work that needs to be
done. Many pages have not been started.

Overview 1

Lighter Documentation, Release Minimum Viable Product

2 Overview

CHAPTER 1

Introduction

This section will go into detail about Lighter’s design and architecture.

Lighter’s goals:

1. Easy to use. Lighter’s APIs should be intuitive and straight forward. Behavior should be easy to reason about.

2. Safe. Lighter should find errors at compile-time, not run-time. Lighter should take advantge of Java’s type
system to provide type safe interfaces.

3. Performant. Lighter should start-up quickly and incur little overhead at runtime.

4. Testable. Lighter applications should be easy to test. Lighter should not force applications to use complex test
constructs just to run unit-tests.

5. Modular. Lighter should not make decisions for the application. It should be easy to switch out components as
required. Lighter shouldn’t pull in 10s of megabytes of dependencies.

This documentation is intended to provide details about how to use Lighter and about how Lighter works. For API
reference, refer to the javadoc.

Note: (from the author, Spaceman1701)

Currently, Lighter’s Minimum Viable Product version is available. This version is designed to demonstrate the
feasability of Lighter. However, it does not have the final feature set or the final APIs. Many of the APIs are awkward
to use or broken.

With this said, Lighter’s MVP version works quite well. It performs very well when compared to Spring Boot and is
usable for real-world applications. I’ve decided I’m going to keep working on Lighter. I’ll be using it for personal
projects whenever I can. I’ll also continue to improve the feature set and APIs. I hope that at some point I’ll be able to
consider Lighter as more than a proof of concept.

If somehow you’ve come accross these docs and you want to contribute to Lighter, head over to GitHub. I’d love
contributions. As I move forward, I’ll be tracking features and issues on GitHub.

3

https://github.com/Spaceman1701/lighter

Lighter Documentation, Release Minimum Viable Product

4 Chapter 1. Introduction

CHAPTER 2

Lighter Architecture

2.1 Basics

Lighter is built of two libraries: The runtime library, lighter-core, and the compile-time library,
lighter-compiler.

Lighter core provides the the stock JBoss Undertow implementations of the core Lighter APIs. It also defines the
declarative annotation API.

Lighter compiler consumes the declarative annotation API. It is responsible for providing compile-time verification
and for generating application-speicifc implementations for Lighter’s abstractions. The compiler uses compile-time
reification of the application to do verification and code generating.

2.2 Terminology

Some important terms for the rest of this documentation.

Lighter The Lighter Web Framework. This will be used to mean the framework as a whole (as opposed to individual
components).’

The Application The actual application that is built using Lighter. This term is used to mean “any application” as
opposed to refering to a speicifc one. The Application consumes Lighter.

Application Developer The developer who is using Lighter to implement her application.

Lighter Core (the Core) The Lighter runtime library and APIs. The stock implementation is lighter-core.
When used in this documentation, it usually refers to the stock implementation.

Lighter Compiler (the Compiler) The Lighter compile-time library. The stock implementation is
lighter-compiler. For what it’s worth, implementations of Lighter Compiler do not necessarily
need to be compile-time only. Essentially, the Lighter Compiler is an invisible provider for the implementations
of Lighter’s high-level abstractions. Since the Compiler is invisible to the application, it’s implementation ins’t
necessarily important. In the future, reflection-based implementations or byte-code weaving-based implemen-
tations might be possible. When used in this documentation, it usually refers to the stock implementation.

5

https://en.wikipedia.org/wiki/Reification_(computer_science)

Lighter Documentation, Release Minimum Viable Product

Lighter Backend The runtime-level implementation of Lighter. This refers to any Lighter APIs that are implemented
by runtime code. The most significant component of the Lighter backend is the web server.

2.3 Interop Between Lighter Core and Compiler

Both libraries are built as seperate entities. In fact, it’s possible to use Lighter Core without using Lighter Com-
piler. However, many of the high-level abstractions that make Lighter pleasent to use are not available without the
compiler. Since the application only depends on Lighter Core, this decoupling means that it’s possible for different
implementations of Lighter Compiler to be used without changing the application.

Since Lighter is currently in MVP, the actual interop between the Core and Compiler components is very limited.
However, future versions of Lighter will have a well-defined API for both components to use. This formalization of
the API has a couple benifits.

1. Improved versioning. It would be possible to version the Core and Compiler components independantly.

2. Support for application libraries. A Core-Compiler API would be able to provide functionality for already-
compiled applications to be used as libraries

3. Multiple Compiler implementations. This one’s obivious. It’d be interesting to see reflection-based implemen-
tations in the future, for example.

2.4 Compiler Components

The Lighter is iterative. Most iterations do some form of reification on The Application’s code. Other iterations
attempt to verify that some set of invariants hold in the reified model. As such, it makes sense to break the compiler
into components defined by which reified model they use.

• Annotation Model Components - a lightweight model which represents the locations and data of each Lighter annotation in The Application

– Annotation Validators - validation that annotations are placed correctly and do not have data errors

– Model Builder - uses the Annotation model to build a more detailed model

• Application Model - a detailed reified model of The Application’s structure

– Model Validators - validation that the model represents a legal application that will work at runtime

– Dependency Collection - collect all of the non-Lighter classes that are required by the model

– Request Guard Collection - collects request guards that might be used by The Application

– Controller Generation - code generation for HTTP endpoint controllers. Produces a new model based
on the generated code

• Generated Code Model - reified model of the application refering to actual generated objects

– Reverse Injection Generation - generate an injector for handling application depedencies

– Route Configuration Generation - generate code for configuration for using generated endpoint han-
dlers

To aid with each of these components, the Compiler also contains components for managing and reporting erros,
generating dynamic code, and defining compilation steps.

Currently, the “Generated Code Model” lacks proper definition in the actual implementation of Lighter Compiler.
Cleaning up the compiler code will be a major focus in future versions of Lighter.

6 Chapter 2. Lighter Architecture

https://en.wikipedia.org/wiki/Reification_(computer_science)

Lighter Documentation, Release Minimum Viable Product

The Lighter Compiler is very complex. More detail about each of these major components will be provided further in
the documentation.

2.5 Core Components

Lighter’s APIs can be subdivided into a couple catagories.

• Declarative - annotations used to identify components of the application.

• Request and Response - used to construct and represent HTTP requests and responses

• TypeAdapter - pluggable API for defining serialization and deserialization procedures

• Injection - pluggable API for depedency management

• Autoconfig - API for using configuration generated by Lighter Compiler.

Lighter Core also provides the backend implementation. The stock Lighter Core implementation provides a backend
which uses JBoss Undertow as a web server.

2.5. Core Components 7

Lighter Documentation, Release Minimum Viable Product

8 Chapter 2. Lighter Architecture

CHAPTER 3

Getting Started With Lighter

This section will provide a small tutorial to help newcomers learn how to use Lighter.

9

Lighter Documentation, Release Minimum Viable Product

10 Chapter 3. Getting Started With Lighter

CHAPTER 4

Using Lighter

This section will provided overviews for all of the concepts required to develop real applications with Lighter. This
isn’t API documentation. Instead, each page will contain a detailed overview of one of Lighter’s core concepts. This
will be useful for determining what features can solve which problems. Each page will also contain examples where
appropriate.

11

Lighter Documentation, Release Minimum Viable Product

12 Chapter 4. Using Lighter

CHAPTER 5

Endpoints

Endpoints are the core of any Lighter application. They allow the application to interact with the outside world. In
Lighter, endpoints are methods that are identified using an endpoint annotation. In the current MVP version of Lighter
the endpoint annotations are @Get, @Post, @Put, and @Delete. Each of these annotations corresponds to an HTTP
method.

Endpoints must always return a Response. See the Response API docs page for details about constructing responses.

5.1 Endpoint Annotations

All of the endpoint annotations have the same API. Each one has an optional value field which can be used to define
a path template stub that the endpoint method should respond to. The full path template that defines the endpoint is
constructed by prepending the endpoint’s Resource Controller path stub to the stub provided in the endpoint annotation.
See more about this in the Resource Contollers section below.

In order to handle HTTP requests, Lighter matches the request method and path against the set of endpoint methods
and path templates in the application. Method parameters are fulfilled by path parameters, query parameters, and the
request body.

5.2 Resource Controllers

Every endpoint method must be a member of a @ResourceController annotated class. Resource Controllers
are plain Java classes. Resource Controllers must specify a path template stub that will be prepended to all of their
members. This is useful as it avoids the necessity of rewriting parts of a the template multiple times for related
endpoints.

Resource Controllers will be instaintiated by Lighter. Thus, they must be instaintiable by the
InjectionObjectFactory. See the docs page on the Injection API for details.

13

Lighter Documentation, Release Minimum Viable Product

5.3 Path Template Syntax

Path template syntax is similar to other web frameworks. Templates can contains three types of components: Normal,
Parameter, and Wildcard. Normal components match components exactly equal to themsevles. A path template made
of only Normal components would match only paths that are identical to it. Parmaeter components will match anything
and bind it to the provided name. Parmaeters are denoted by surrounding a name with { and }. Every parameter as
a type which is inferred from the method signature. Wildcard components are denoted by a * and greedly match any
number of components.

Here are some examples:

The template foo/bar/123 will match exactly the path foo/bar/123 and nothing else.

The template foo/bar/{id} will match any path with exactly 3 components that begins with foo/bar/. The
third component of the path will be bound to the name “id”.

The template foo/bar/* will match any path that begins with foo/bar/.

The template foo/*/bar will match any path that begins with foo and ends with bar

5.4 Query Parameters

HTTP query parameter bindinds can be specified in a similar way to path Parmaeter components. However, query
parameters do not appear as part of the path template. Instead, the @QueryParameters annotation is used to
provide a list of name bindings. Since the names of query parameters are exposed as part of the applications API,
Lighter allows external and internal names of query parameters to differ. The external (exposed) name is what HTTP
calls should use. The internal (mapped) name should match the name of the parameter on the Java endpoint method.

Query parmaeter names are specified using an array of Strings. Exposed names and mapped names are seperated by a
:. If only one name is provided, Lighter assumes the exposed name is identical to the mapped name.

Here are some examples:

The parameter foo:bar specifies an exposed name foo which maps to a parameter on the Java method named
bar

The parameter foo specifies an exposed name foo which maps to a parmaeter on the Java method named foo

Similar to path Parameters, query parameter types are inferred from the Java method.

5.5 Accessing the Request Body

The request body content can be mapped to any method parameter by annotating it with @Body. The type of the body
content is infered from the method.

5.6 Parameter Type Inference

All endpoint parameter types are inferred from the Java method signature. Any Java type can be used as long as
the application TypeAdapterFactory is capable of producing a TypeAdater for the type. Query and path
parameters are assumed to have a MIME Media Type of text/plain. The Media Type of the request body is
determined by the Content-Type header.

If a method parameter is optional (i.e. an error should not occur if Lighter can not provide data for the parameter), it
should have a type of java.util.Optional (or one of the allied Optional types provided in the standard library).

14 Chapter 5. Endpoints

Lighter Documentation, Release Minimum Viable Product

Since Lighter performs type inference at compile time, it is able to use the generic type parameter of Optional for
serialization and deserialization logic.

Lighter will never provide a null value for a method parameter. If a non-Optional parameter can not be provided for
any reason, Lighter will throw an error.

5.6. Parameter Type Inference 15

Lighter Documentation, Release Minimum Viable Product

16 Chapter 5. Endpoints

CHAPTER 6

Response API

The response API allows your application to return data to the outside world. Since every endpoint must return a
response, the API is designed to be very concise. However, applications will have extemely variable requirements for
Response structure, so the API also allows a great deal of flexibility. In addition to this, Responses must be easy to use
in unit tests.

The main class that applications will interact with is the Reponse class. To the user, Response is a Plain Old Java
Object. Response is immutable and method calls have no side effects. In addition to Response, applications will
interact with instances of the ResponseDecorator functional interface. the Response#with method provides
a fluent API for adding decorators to the Response object. This is the primary way to build custom responses.

Lighter also provides the Responses static factory class with utility methods for constructing common HTTP re-
sponse types. Responses has methods for constructing 3xx - Redirect, JSON content, and no content re-
sponses.

The Response API is type safe. The Response class type parameter is used to represent the type of the response
body content. ResponseDecorator application can change the type parameter. This allows chains of decorator
application to maintain type safety. java.lang.Void is used to represent an empty response.

6.1 Using Response

The Response class does not contain the serialized data. Instead, it contains a reference to the Java object that will
be serialized. Lighter uses the top level TypeAdapterFactory to serialize the content. Lighter ensures that the
type is serialized with the correct MIME Media Type by reading the Content-Type header on the response.

When using the Response for unit testing endpoints, the Java object is directly available.

6.2 Standard Response Decorators

Lighter provides a few standard response decorators. These allow most required responses to be constructed. Since
ResponseDecorator is a functional interface, lambda functions can also be used.

17

Lighter Documentation, Release Minimum Viable Product

The provided decorators are:

• HeaderResponse - adds a header to the response

• StatusResponse - sets the response status code

• JsonContent - adds an object as the response body and sets the content-type header to application/json

18 Chapter 6. Response API

CHAPTER 7

Request Guards

Request guards allow your application to define preconditions to endpoint execution. This feature is inspired by one
of Ligther’s primary inspirations: Rocket Web Framework.

Note: This feature is currently in early stages of development. Expect lots of changes.

Request Guards are special endpoint method dependencies that are not constructed directly from the request. In-
stead, Request Guards are constructed by application defined logic using a RequestGuardFactory. Request
Gaurds are identified using the RequestGuard marker interface. RequestGuardFactories are identified using the
RequestGuardFactory interface and the @ProducesRequestGuard annotation.

Note: The RequestGuardFactory API is an area that is targeted for change in the future. It is very awkward to require
both an interface and annotation to mark RequestGuardFactories.

Since Request Guards are constructed by application logic, they can be used to define custom pre-requesite con-
ditions for endpoints. In order to use a Request Guard, the endpoint method must simply add a parameter of a
RequestGuard type. Lighter will determine how to fulfill that requirement at compile time.

Note: Currently, Lighter does not support Optional Request Guards. This feature will be added soon.

Note: Request guard errors current cause a 500 - Internal Server Error. In the future, the API will allow
more control over how Request Guard construction errors occur.

RequestGuards are the idiomatic way to implement authentication and other cross-cutting concerns.

19

https://rocket.rs/

Lighter Documentation, Release Minimum Viable Product

20 Chapter 7. Request Guards

CHAPTER 8

Injection API

Control how your classes get instantiated by Lighter. The primary class applications will interact with is the
InjectionObjectFactory. This functional interface is designed to provide a implementation agnostic API
for dependency injection containers. The interface is very simple as it is only used when Lighter needs to construct a
class for the application.

The interface is designed to match the Guice Injector#newInstance method.

The other class used for dependency construction is the ReverseInjector. Implementations of
ReverseInjector provide an instance of InjectionObjectFactory. Lighter will automatically generate
an implementation of ReverseInjector that has a setter for every dependency Lighter will need to construct. The
auto generated implementation conforms to Java Beans and javax.Inject standards for dependency Injection. This im-
plementation can be used as a configuration bean with dependency injection frameworks that do not have an Injector
class (like Dagger 2).

21

Lighter Documentation, Release Minimum Viable Product

22 Chapter 8. Injection API

CHAPTER 9

Lighter API

Construct and interact with the Lighter instance. The Lighter object represents the application itself. Lighter
instances can only be constructed using the Lighter.Builder API. This fluent API provides many configuration
options for Lighter.

Both Lighter and Lighter.Builder are interfaces which define what configuration options and operations all
Lighter backends must support. Backends can choose to implement extra operations. The Undertow backend (which
is currently the only backend), provides only the required methods.

Lighter runs asycronously. Lighter#start returns as soon as the server is started. This allows the main thread to
be used for controlling Lighter.

23

Lighter Documentation, Release Minimum Viable Product

24 Chapter 9. Lighter API

CHAPTER 10

Automatic Configuration

Control how generated code is used. Autoconfiguration can be accessed using the AutoConfigurationFactory.
This singleton factory class can be used to access the configuration objects that Lighter generates at compile time.
Normally, applications will access this class to load the route configuration instance to pass to Lighter.Builder.

25

	Introduction
	Lighter Architecture
	Basics
	Terminology
	Interop Between Lighter Core and Compiler
	Compiler Components
	Core Components

	Getting Started With Lighter
	Using Lighter
	Endpoints
	Endpoint Annotations
	Resource Controllers
	Path Template Syntax
	Query Parameters
	Accessing the Request Body
	Parameter Type Inference

	Response API
	Using Response
	Standard Response Decorators

	Request Guards
	Injection API
	Lighter API
	Automatic Configuration

